

Phase resolved spectral analysis of Fermi-LAT millisecond pulsars

- 1. Trends with energy
- 2. Trends with phase

2 papers

N. Renault-Tinacci

In collaboration with:

I. Grenier, A.K. Harding, JM Casandjian, M.E. DeCesar, L. Guillemot, T.J. Johnson, Q. Remy, C. Venter.

Motivations, Goals, Questions

Why MSPs?

- Growing γ -ray pulsar class
- Clues indicating same acceleration/radiation processes in MSPs as in young pulsar magnetospheres (similar γ-ray profiles, same B near the light cylinder)
- More stable (but fainter)

1st systematic phase-resolved spectral analysis of γ-ray MSPs

- Where do the acceleration and γ-ray emission originate in the magnetosphere?
- Acceleration in thin screened gaps or in thick, pairstarved zones?
- Which γ radiation processes involved?

Data & Analyses

Preliminary

- Pass 7 Reprocessed Fermi-LAT data
- **60 months (August 2008 August 2013)**
- 50 MeV < E_{phot} < 170 GeV

Fixed-count binned lightcurves:

- Tempo2
- photon selection
 - $E_{\text{phot}} > 200 \text{ MeV} \text{ and } \theta_{\text{phot}} < PSF_{68\%}(E_{\text{phot}})$
- separation of 4 MSP classes based on morphology
- phase interval definition (Peak cores, wings, bridge,...)

Spectral analysis:

Tinacci

- total emission and in phase intervals
- iterative extraction of pulsed flux in energy bins (no need for an input spectral shape as in gtlike)

Subsequent spectral characterization:

- bivariate max-likelihood fit of PL Exponential **Cut-Off**
- local quadratic fit of SED apex energy
- energy flux G_{>50MeV} and luminosity L_v above 50 N. Renault MeV

MSP sample

•	25	millisecond	pulsars
	_		J

- bright
- bright enough wrt background
- Good sampling of the MSP population in
 - direction (I, b)
 - P & Pdot
 - energetics (Ė, B_{LC},...)
 - geometry (α_B , ζ_{view})

	Pulsar name	l	b	P	Ė	\dot{E}	Distance ^{a,b}	light-curve morphology
_		(deg)	(deg)	(ms)	$(10^{-20} \mathrm{ss^{-1}})$	$(10^{26} \mathrm{W})$	(kpc)	
	J0030+0451	113.14	-57.61	4.87	1.06	3.62	$0.28_{0.06}^{0.10}$	3 peaks
	J0034-0534†	111.49	-68.07	1.88	0.29	17.18	$0.54_{0.10}^{0.11}$	3 peaks
	J0102+4839†	124.87	-14.17	2.96	1.17	17.81	$2.32_{0.43}^{0.50}$	dome+peak
	J0218+4232†	139.51	-17.53	2.32	7.69	243.19	$2.64_{0.64}^{1.08}$	ramp
	J0340+4130	153.78	-11.02	3.30	0.59	6.48	$1.73_{0.30}^{0.29}$	2 peaks
	J0437-4715	253.39	-41.96	5.76	1.41	2.91	$0.156_{0.001}^{0.001}$	ramp
>	J0613-0200	210.41	-9.30	3.06	0.87	12.03	$0.90^{0.40}_{0.20}$	ramp
	J0614-3329	240.50	-21.83	3.15	1.78	22.48	$1.90_{0.35}^{0.44}$	2 peaks
	J1124-3653†	284.10	22.76	2.41	0.58	16.22	$1.72_{0.36}^{0.43}$	ramp
	J1231-1411	295.53	48.39	3.68	0.65	5.15	$0.44_{0.05}^{0.05}$	3 peaks
	J1311-3430	307.68	28.18	2.56	2.09	49.18	1.40	2 peaks
	J1514-4946	325.25	6.81	3.59	1.87	15.96	$0.94_{0.12}^{0.11}$	2 peaks
	J1614-2230	352.64	20.19	3.15	0.50	6.33	$0.65_{0.05}^{0.05}$	3 peaks
	J1658-5324†	334.87	-6.63	2.44	1.10	29.89	$0.93_{0.13}^{0.11}$	ramp
	J1744-1134†	14.79	9.18	4.07	0.70	4.11	$0.42^{0.02}_{0.02}$	dome+peak
	J1810+1744†	44.64	16.81	1.66	0.46	39.93	$2.00_{0.28}^{0.31}$	ramp
	J1902-5105	345.65	-22.38	1.74	0.90	67.45	$1.18^{0.22}_{0.21}$	3 peaks
	J1939+2134†	57.51	-0.29	1.56	10.55	1096.59	$3.56_{0.35}^{0.35}$	2 peaks
	J1959+2048†	59.20	-4.70	1.61	0.81	76.33	$2.49_{0.49}^{0.16}$	dome+peak
	J2017+0603	48.62	-16.03	2.90	0.83	13.44	$1.57_{0.15}^{0.16}$	3 peaks
	J2043+1711	61.92	-15.31	2.38	0.43	12.65	$1.76_{0.32}^{0.15}$	2 peaks
	J2124-3358	10.93	-45.44	4.93	1.12	3.67	$0.30_{0.05}^{0.07}$	ramp
	J2214+3000†	86.86	-21.67	3.12	1.50	19.50	$1.54_{0.18}^{0.19}$	dome+peak
	J2241-5236†	337.46	-54.93	2.19	0.87	32.70	$0.51_{0.08}^{0.08}$	dome+peak
	J2302+4442	103.40	-14.00	5.19	1.33	3.76	$1.19_{0.23}^{0.09}$	3 peaks

Phase-resolved spectra

MSP spectral sequence

- Softening with B_{LC} (and E)
 - Γ constant with B_{LC} rejected at >10σ
- Shift in E_{apex} with \dot{E} (and B_{LC})
 - Curvature testing (« pairwise slope statistics », Abrevaya et Jiang 2003)
 - → P_{curv} = 99,97 %

MSP spectral sequence

- Toy model of curv.-radiation spectra:
 - primaries near the light cylinder with various Γ_{max} Lorentz factors
 - curv. radius = R_{LC} (Hirotani 2011)
 - cannot reproduce the E_{apex} vs Edot and Γ vs B_{LC} trends
- Additional softer component
 N. RenaultTinacci required

Synchroton component from primary pairs

- too high energy γ rays for secondary pairs
- for the SG (Harding et al. 2008) or OG models (Takata et al. 2008)
- Smooth transition layer from $E_{//}\neq 0$ to $E_{//}=0 \Rightarrow CR$ at a few hundred MeV
 - for the OG (Wang et al. 2010) or FIDO models (Kalapotharakos 2014)

radio & γ-ray alignment

- Multi-peak pulsars : softening when radio and γ-ray peaks aligned
- → Synchrotron component from pairs gaining pitch angle by cyclotron resonant absorption of co-located radio photons (Harding et al. 2008) ?

Saturation of Lorentz factors

- Maximum Lorentz factor estimation from E_{cut}
 - for the total emission
 - assuming curv. radiation
 - with curv. radius = R_{LC} (Hirotani 2011)

$$\Gamma_{max} = \left(E_{cut} \frac{2}{3} \frac{R_{LC}}{\hbar c}\right)^{1/3}$$

• Narrow Γ_{max} distribution around 10^7

Different emission regions/regimes

- Total emission
 - Trend & dispersion consistent with 2PC
- But:
 - Multi-peaks : L_γ ∝ √Ė → screened thin gap near last closed B line dominates the output
 - Ramps : L_γ ∝ Ė → unscreened thick region partially (?) filling the open magnetosphere

Multi-peak: different emission regions/ regimes______

Ramps: uniform emission region/regime

- No evolution across phase
- → single emission region?
- L_γ ∝ Ė → unscreened gaps

Conclusions

- Need to re-think the classical picture of thin caustic gaps/wide unscreened regions
 - possibly co-existing in the magnetosphere and both contributing to the observed pulsed emission
- MSP spectral sequence with E :
 - potential influence of radio emission
 - need for an additional soft radiation component
 - synchrotron radiation from primary pairs
 - and/or CR smooth transition layer in E_{//}
- The brighter the core, the higher the apex energy, the harder the SED
- Softer emission and lower E_{apex} outside the main peaks
- Perspectives
 - confirm trends with 8 years of data and with larger MSP sample
 - same analyses for young pulsars

Thank you for your attention

BACK-UP

Detailled analysis protocol

Phase-resolved spectra

- Photon index, Γ ⇔ primary particle distribution, cascade development and/or photon pile-up in phase
- Cut-off energy, E_{cut}
 ⇔ Maximum pair energy or γγ pair absorption

Spectral behaviour across phase (multi-peak)

Spectral trends for peaks

- The brighter the core, the harder the SED (lower Γ), the higher the apex energy
 - Irrespective of the peak order
- Expected if dominant curv. radiation

- Inconsistent with classical OG/SG models (harder 2nd peak)
- Consistent with new FIDO model (Kalopotharakos et al. 2014)
- Potential diagnostic to discriminate 1- vs 2-pole emission models

Different emission regions/regimes

Different emission regions/regimes

